The scaling effects of substrate texture on camouflage patterning in cuttlefish
نویسندگان
چکیده
Camouflage is the primary defense in cuttlefish. The rich repertoire of their body patterns can be categorized into three types: uniform, mottle, and disruptive. Several recent studies have characterized spatial features of substrates responsible for eliciting these body patterns on natural and artificial backgrounds. In the present study, we address the role of spatial scales of substrate texture in modulating the expression of camouflage body patterns in cuttlefish, Sepia officinalis. Substrate textures were white noise patterns first filtered into various octave-wide spatial frequency bands and then thresholded to generate binary (black/white) images. Substrate textures differed in spatial frequency but were identical in all other respects; this allowed us to examine the effects of spatial scale on body patterning. We found that as the spatial scale of substrate texture increased, cuttlefish body patterns changed from uniform, to mottle, to disruptive, as predicted from the camouflage mechanism of background matching. For substrates with spatial scales larger than skin patterning components, cuttlefish showed reduced disruptive patterning. These results are consistent with the idea that the body pattern deployed by a cuttlefish attempts to match the energy spectrum of the substrate, and underscore recent reports suggesting that substrate spatial scale is a key determinant of body patterning responses in cuttlefish.
منابع مشابه
Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns
Cuttlefish are cephalopod molluscs that achieve dynamic camouflage by rapidly extracting visual information from the background and neurally implementing an appropriate skin (or body) pattern. We investigated how cuttlefish body patterning responses are influenced by contrast and spatial scale by varying the contrast and the size of checkerboard backgrounds. We found that: (1) at high contrast ...
متن کاملInteractive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish
Disruptive body coloration is a primary camouflage tactic of cuttlefish. Because rapid changeable coloration of cephalopods is guided visually, we can present different visual backgrounds (e.g., computer-generated, two-dimensional prints) and video record the animal's response by describing and grading its body pattern. We showed previously that strength of cuttlefish disruptive patterning depe...
متن کاملModular organization of dynamic camouflage body patterning in
Cephalopods have the most sophisticated dynamic skin coloration for rapidly camouflage in nature. Previous studies have suggested that the pair of optic lobes located bilaterally in their brain plays a key role in controlling the expansion of chromatophores for generating diverse body patterns. However, the functional organization of the optic lobes and their neural control of various body patt...
متن کاملHyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators.
Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge fr...
متن کاملCuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues.
Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 49 شماره
صفحات -
تاریخ انتشار 2009